
eginnovations.comhttps://www.eginnovations.com/

How to Get Full-Stack Visibility
for Your Java Applications

Introduction

What is Java APM?

Java is one of the most popular technologies for
application development. In a recent eG
Innovations and DevOps Institute survey of
Application Performance Management in the
new normal, almost 60% of respondents reported
that they were using Java technologies for their
key business applications. Java technology
powers key business applications in various
domains like finance, healthcare, insurance and
education, and many of these applications
process tens of millions of requests per day. When
these applications slow down, they a�ect the user
experience and in turn, impact business revenue.
This is one of the reasons why performance
monitoring for Java applications is garnering
attention.

Java APM stands for Java Application Performance
Monitoring. Gartner defines application
performance monitoring (APM) as software that
enables the observation and analysis of
application health, performance and user
experience. Typical users of such solutions in an
organization are IT operations teams, Site
Reliability Engineers (SREs), reliability engineers,
cloud and platform ops, application developers,
and product owners.

How to Get Full Stack Visibility for Your Java Applications 02

Deep-dive/ troubleshoot appl icat ion
performance: While knowing when there is a
user experience problem is important, being
able to determine the reasons for user
experience issues and to resolve them is
even more important.

Learn more about: Synthetic vs. Real User
Monitoring (RUM)

Both approaches to user experience
monitoring have their pros and cons, and
ideally, one should implement both
approaches as the two approaches
complement each other.

Synthetic Monitoring: Tools in this
category enable the creation of software
robots to check di�erent workflows that
users follow when accessing an
application. By repeatedly following these
workflows from one or multiple locations,
periodically, synthetic monitoring
provides an indication of the experience
users are likely to see.

Two common ways of measuring user
experience are:

Measure user experience when accessing
the application: User experience is important
because it is a key measure of the success of
any IT application or initiative. After all, if
users are complaining of slowness, it doesn’t
matter what the CPU usage or memory
utilization levels are.

Real user monitoring (RUM): This refers
to the ability to passively observe user
activities and compute the response time
that users see. Using JavaScript injection,
RUM collects data directly from users'
browsers or devices, tracking metrics
such as page load times, network latency,
JavaScript errors, and user interactions.

https://www.eginnovations.com/ebooks/application-performance-monitoring-survey
https://www.eginnovations.com/ebooks/application-performance-monitoring-survey

https://www.eginnovations.com/blog/synthetic-vs-real-user-monitoring/
https://www.eginnovations.com/blog/synthetic-vs-real-user-monitoring/

Revenue loss due to 1hr of slowness: $4,100

-TRAC Research

However, application slowness occurs
10 times more frequently than outage.

#1

#2

There are two key capabilities of an APM solution:

Java APM tools instrument the Java application
code, collect metrics during runtime, and report
them to a centralized monitoring system. These
metrics are used to analyze application
performance, detect bottlenecks, and identify
areas for optimization.

Detecting if an application is slow is the easy part.
Even if you don’t have proactive means of
detecting a problem, it is likely that many users
will call the helpdesk when a problem occurs. To
determine why an application is slow can be very
di�icult for several reasons:

This whitepaper focuses on the second Java
APM capability, i.e., deep-dive/troubleshooting
application performance and how it is
implemented in the eG Enterprise solution from
eG Innovations.

Why is Java
APM Challenging?

Modern Java applications are multi-threaded.
Threads may be short lived or long running
and there can be complex interactions and
synchronizations between threads.

The di�erent application tiers may execute
on physical machines, virtual machines,
cloud instances or containers, and each tier
may involve a di�erent application server or
middleware layer (e.g., front-end based on
JBoss, core application based on Oracle
WebLogic).

Applications may also have external
dependencies – e.g., payment gateways, 3rd
party web services, etc. which may not be
under the control of your organization.

It is also common to have applications that
make use of di�erent technologies. The
front-end could be based on Node.js while
the business logic may be in Java.

Because of the inter-dependencies between tiers
in a multi-tier application, a slowdown in one tier
(e.g., the database), can result in slowness in
many of the other tiers (e.g., front-end,
middleware, etc). External dependencies can also
slow down transaction processing and result in
increased latency. Even in the case of internal
dependencies, the di�erent tiers involved may be
controlled by di�erent IT teams (e.g., application
team, database team, messaging team, system
team, etc). All of this means that
determining why an application is slow can be a
huge challenge.

At the same time, Java applications are
multi-tiered and di�erent application
components can execute on di�erent
systems, or even in di�erent networks. There
can be many di�erent modes of
communication between the tiers – e.g.,
message queues, API gateways, sockets, web
service calls, etc.

How to Get Full Stack Visibility for Your Java Applications 03

Web Server Database

Cloud Service

Middleware

App Server

Queue

Q
u
e
u
e

Validation

ProcessingPricing

Figure 1: A complex, multi-tiered application has
several application and middleware tiers with

interactions among them.

Because of the inter-dependencies between tiers
in a multi-tier application, a slowdown in one tier
(e.g., the database), can result in slowness in
many of the other tiers (e.g., front-end,
middleware, etc). External dependencies can also
slow down transaction processing and result in
increased latency. Even in the case of internal
dependencies, the di�erent tiers involved may be
controlled by di�erent IT teams (e.g., application
team, database team, messaging team, system
team, etc). All of this means that
determining why an application is slow can be a
huge challenge.

Three Focus Areas for
Java APM

Monitoring the Java virtual machine (JVM):
The Java Virtual Machine (JVM) is the core of
the Java application architecture. It interprets
and translates the Java bytecode

Monitoring the Application Server:
Application servers provide out of the box
support for developing web-based Java
applications. They include support for Java
Servlets, Java Server Pages, WebSockets,
Struts, thread pools and database
connection pools, and other application
constructs that greatly simplify and
standardize application development.
Performance bottlenecks can occur due to
application server configuration limitations
(e.g., insu�icient number of worker threads in
the server configuration, excessive queueing
in the application server, database
connection pool issues, etc). APM tools must
provide out of the box monitoring for
common Java application servers.

into operations on the host platform.
Because the Java middleware - including
application servers such as Tomcat, JBoss
EAP, WildFly, GlassFish, IBM WebSphere,
Oracle WebLogic - runs on the JVM, a
performance issue in the JVM has a
significant impact on business services it
supports. Monitoring of the JVM is an integral
part of any Java application performance
monitoring strategy. IT Ops and DevOps
teams use JVM performance metrics to
troubleshoot server-side bottlenecks.
Developers and architects can also benefit
from JVM monitoring by uncovering
code-level issues.Common questions that must be answered when

diagnosing an application slowness issue include:

There are three key areas to focus on when it
comes to Java APM:

This is where APM tools help in pinpointing the
exact source of a performance issue.

Is it an application logic/code-level issue and
if so, which module/line of code?

Is it due to an ine�icient database query, or a
slow external service call?

Is it a configuration bottleneck in the
application server?

Is it a sizing issue in the Java Virtual Machine?

Is it an infrastructure issue – network,
storage, server, etc.?

How to Get Full Stack Visibility for Your Java Applications 04

Where is the problem?

Java Code

Java Application Server

Java Virtual Machine (JVM)

Why is the Java
application slow?

Figure 2: The toughest IT problem that admins face is
users complaining that their applications are slow.

Figure 3: Java APM covers monitoring of the JVM,
Java application server and Java code.

Monitoring of the Application Code: Ine�iciencies in the application code can a�ect application
performance. Infinite loops, ine�icient code logic, database queries that don’t use the right
indexes, external service calls, absence of caching repeatedly used objects, etc., can all result in
application slowdown. For years, a big challenge in monitoring application code has been the need
to modify the application code in order to allow monitoring to be done. This can be time consuming
and cumbersome and requires cooperation between the development team and the operations
team. The advent of bytecode instrumentation has allowed modern APM tools to monitor
application code performance without needing any changes to the applications themselves.

Should each Java method be instrumented? If not, which ones should not be
instrumented?
How long should the instrumentation of a transaction run for?
How to determine when to stop instrumenting a transaction?
Since the application server could be handling thousands of transactions, where will the
results of instrumentation be stored? Where will these transactions be aggregated and
how often?
How to perform aggregation without needing to synchronize among threads, which can
be expensive?
How can this be achieved without a�ecting the response time experienced by end users?

Modern APM tools use a technique called dynamic bytecode instrumentation which allows
them to modify the code of Java applications “on the fly” as they are loaded into memory via a
Java agent. It may seem surprising that applications can modify themselves at runtime, but that
is how the JVM works because Java is a dynamically loaded language. APM tools have
capabilities to dynamically attach a Java agent to an already running JVM, such that you don’t
need to edit any startup scripts or even restart the application server. In a nutshell, the code is
altered – not only on disk but dynamically in the runtime memory.

Bytecode instrumentation is a well-known technique that has existed since Java 1.5. There are
open source libraries such as ASM, cglib, javassist and Byte Buddy available to implement
Bytecode manipulation. While the mechanism of implementing bytecode instrumentation is
straightforward these days, there is a lot of complexity in actually implementing a monitoring
solution using bytecode instrumentation.

What is Bytecode Instrumentation?

How to Get Full Stack Visibility for Your Java Applications 05

To ensure that the overhead of instrumentation is minimal, APM tools must determine:

Foo.java

New
Instruction

Foo.class

Load

Compile

(Original bytecode)

bytecode

(Instrumental bytecode)
Verify & Load

Foo.class

JVM

Figure 4: How bytecode instrumentation works.

Should each Java method be instrumented? If not, which ones should not be
instrumented?
How long should the instrumentation of a transaction run for?
How to determine when to stop instrumenting a transaction?
Since the application server could be handling thousands of transactions, where will the
results of instrumentation be stored? Where will these transactions be aggregated and
how often?
How to perform aggregation without needing to synchronize among threads, which can
be expensive?
How can this be achieved without a�ecting the response time experienced by end users?

The eG Enterprise observability solution from eG
Innovations provides full-stack visibility into Java
applications and their performance. While user
experience monitoring can be achieved with
synthetic and real-user monitoring, eG Enterprise
also provides extensive application deep-dive and
insights.

eG Enterprise monitors most commonly used
types and versions of JVMs. Key monitoring
capabilities include:

eG Enterprise: Delivering
Full-Stack Java APM

Thread level monitoring to report total
threads, runnable threads, blocked threads,
deadlocked threads and so on. By tracking
total threads over time, one can identify
thread leaks in an application. Blocked and
deadlocked threads are often an indicator of
performance issues. Stack traces are
provided so IT operations teams can quickly
identify problem areas in the application and
inform the development teams.

CPU monitoring in the JVM: The CPU used by
each thread of the JVM is tracked and high
CPU consuming threads are identified. This
can be used to detect run-away threads that
may be responsible for slowness of the appli-
cation. Stack traces captured over time help
identify the code snippet/method that could
be the cause of the problem.

Track garbage collection activity in the JVM:
eG Enterprise allows you to easily track all
garbage collection activity in the JVM.

In-depth JVM Monitoring

Figure 5: Stack trace of Java threads showing thread blocking.

Identify when garbage collection
happened, how often it is happening,
how much memory is being collected
each time and how long the garbage
collection activity is running for.

Identify times when garbage collection is
taking too long and adversely a�ecting
Java application performance.

Compare the performance of di�erent
garbage collection settings and
determine the optimal setting for each
application, using historical and real-time
data, plus custom reports.

How to Get Full Stack Visibility for Your Java Applications 06

WebSphere, etc). eG Enterprise uses JMX and
custom interfaces where applicable to collect
performance metrics that provide an indication of
application server health. Performance metrics
collected through these means include:

Thread pool activity: Number of threads
provisioned, number in use and utilization of
each pool.

Log monitoring: to detect any crashes or
abnormalities reported in the server logs.

Database connection pool utilization: Pool
capacity, connections in use, utilization level,
database response time.

Servlet/JSP activity: Requests and response
rates, errors, average processing time, max
processing time, etc.

Application workers: Completed requests,
pending requests, stuck requests.

Figure 6: Details of objects in the JVM heap memory.

There is no common mechanism for monitoring
application servers. Most application servers
expose performance metrics through Java
Management Extensions (JMX). Some application
servers support custom interfaces/protocols
(e.g., T3 for Oracle WebLogic, PMI for IBM

Monitoring of Java Application Servers
Figure 7: Monitoring model of an application server.

To monitor Java application code, eG Enterprise
uses bytecode instrumentation. A thin APM agent
layer is introduced that sits above the JVM and is
able to capture method calls, SQL calls, HTTP
calls, external service calls, etc.

Monitoring of Java Application Code

How to Get Full Stack Visibility for Your Java Applications 07

Proactively detect memory leaks in
application code: Although the JVM
performs automatic memory management, it
cannot counter for memory leaks in your Java
applications. Memory leaks are di�icult to
identify because they can take several days
or weeks to manifest. Identifying the cause of
Java memory leaks can be challenging,
especially in production. eG Enterprise
periodically takes and analyzes memory
dumps of the JVM and identifies the top
consumers of Java heap memory. Based on
the automatic analysis of Java memory usage
by eG Enterprise, administrators can be
alerted to potential memory leaks in the
application and can easily identify the exact
Java class that may be causing a memory
leak.

See JVM monitoring perfected for more details
about eG Enterprise's JVM monitoring
capabilities.

https://www.eginnovations.com/supported-technologies/jvm-monitoring

With bytecode instrumentation, you can trace the
transaction processing at each application tier.
You can identify how much time was spent in each
JVM executing Java code, and importantly how
much time was spent issuing and waiting for
database queries, web service calls to third
parties, HTTP calls to other tiers and so on.

With multi-tier applications, knowing the
processing details tier-wise is not su�icient. IT
operations teams and development teams expect
to see end-to-end traces, so they can see how
much time was spent by a specific transaction in
each tier. eG Enterprise uses a “tag-and-follow”
methodology for this. Transactions are tagged in
the first tier they are processed at. The tag is
carried forward in a HTTP request body if a
request is passed from one application tier to
another by the APM agent in each tier. Tagging is
supported for other non-application tiers as
well – for example, for message queues, the tag is
part of the message header.

For each tagged transaction, eG Enterprise
captures the processing time for transactions at
each tier, external calls made, and time taken
those calls and details of how the transaction was
processed (e.g., database queries, Java stack
details, etc).

Figure 9: Details of transactions processed by an application tier.
All transactions are analyzed (not just a subset).

Figure 8: How the tag and follow methodology used
by eG Enterprise APM works.

How to Get Full Stack Visibility for Your Java Applications 08

To put together the complete transaction flow, all
the traces collected at each application tier are
sent to the central management server, where the
transaction processing flow graph is constructed
(see Figure 9 below). As you can see, from the eG
Enterprise web interface, an admin can see the
total transaction processing at each tier.

It is to be noted that unlike some other
APM solutions, eG Enterprise does not

sample a subset of transactions. Take a
typical enterprise application distributed
across multiple application tiers. eG
Enterprise traces all transactions across all
application tiers. For each application tier,
these traces are analyzed and a set of
healthy, slow, stalled and error transactions
are ranked from worst to best based on (a)
latency and (b) first occurrences of error and
stored as Top N traces for detailed diagnosis.
This ranking is specific to each application
tier and is per business transaction. This
ranking based Top N selection helps
administrators focus on what’s problematic
for that specific tier since each application
tier could be experiencing di�erent
performance bottlenecks.

Figure 10: Details of slow transactions processed.

Figure 11: Transaction processing flow graph showing time spent in each tier.

Drilling further into any specific transaction (from the magnifying glass again), one can see how the
transaction was processed. The flow graph shows the tiers involved in processing and the time taken at
each tier. From this figure, it is apparent that processing of database queries is the bottleneck. Three
queries were executed, taking a total time of 12,035 msecs.

Transaction tracing has become very popular for many reasons:

It provides in-depth insights into distributed application performance, without needing any
change to the application code. Even IT operations teams can implement transaction tracing
without needing any assistance from development teams.

Application insights can be obtained without needing any permissions from other
administration teams – e.g., database team, server team, etc.

Why is Transaction Tracing E�ective?

How to Get Full Stack Visibility for Your Java Applications 09

From the Figure 9, you can see that there is an alert because slow transactions are high. By clicking on
the detailed diagnosis (i.e., the magnifying glass to the right of the metric), an admin can see a list of
transactions whose processing is slow.

Breakdown of transaction processing time by tier gives conclusive proof to answer today’s
toughest IT question which is “Why is the application slow?”.

Figure 12: Details of queries issued to the database tier by the application.

By clicking on the Database Queries in Figure 11, an admin can see the details of the slow queries that
were processed.

As you can see above, eG Enterprise APM provides a lot of detail about transaction processing that
makes it simple to answer the question “Why is my application slow?”.

Database monitoring tools provide insights from the database perspective and are
intended for use by the database administration team. A database server may be used by
many applications. The top queries across applications is listed, so a database admin can
analyze them and determine how to optimize the database. Queries and accesses seen at
the database tier may not even be related to specific applications – e.g., a backup job can
cause a lot of IOPS on the database server.

Insights provided by APM tools are specific to each application and how it accesses/uses
the database server. These insights can be obtained without needing any additional
permissions on the database tier. Application developers can use these insights to
optimize how their application uses the database (e.g., detect queries that may not be
optimized).

Database monitoring tools also provide details of slow database queries. How is the
information provided by APM tools di�erent?

How to Get Full Stack Visibility for Your Java Applications 10

While the example above showed a multi-tier application where each of the application tiers used Java
technology, the same functionality is also available if any of the application tiers uses Microsoft .NET,
Microsoft .NET Core, Node.js or PHP as well. Also, it does not matter where an application tier runs – i.e.,
on a physical machine, virtual machine, cloud instance, or a container.

Since there is a lot of data collected for each
transaction at each tier, it is practically impossible
to store all the details for display. Doing so would
require a very large database.

Typically, a high percentage of transactions are
processed by an application without any errors,
and a small subset of transactions is processed
slowly or has been processed with exceptions (see
Figure 13). Therefore, eG Enterprise provides
administrators with controls to decide whether to
collect detailed stack traces for healthy
transactions or not (e.g., if a transaction is healthy,
it was processed quickly, and it may not be
necessary to collect detailed traces). By turning o�
details for healthy transactions, one can save on
database storage of a large number of application
stack traces. The processing time value below
which a transaction is considered healthy is also
configurable for each application and for each
transaction. For example, if a request takes more
than 10 seconds to be processed, it will be
considered a slow transaction and one that takes
more than 60 seconds can be deemed to be a
stalled transaction.

There are a number of other configuration
settings that can be tuned when configuring eG
Enterprise, as you can see from Figure 14.

How to Get Full Stack Visibility for Your Java Applications 11

Tracing can be enabled for each URL, or
insights can be captured for a group of
URLs – e.g., all payment URLs, all
browsing URLs, etc. Grouping URLs also
ensures that aggregate metrics are
collected for groups of URLs and this also
results in lower database space usage.

The maximum execution time cuto�, i.e.,
the maximum time for which eG
Enterprise APM waits for a transaction to
be processed, is configurable. The larger
the value, the more time that eG
Enterprise APM waits for a transaction to
be processed and potentially, higher its
processing overhead and data storage
required.

The eG Enterprise agent captures
detailed stack traces for the slowest N
URLs/URL groups. For slow transactions,
traces for the slowest N transactions in a
measurement period are stored. The
value of N is configurable (default value is
10 in any measurement period). For
exceptions too, only stack traces for N
transactions with exceptions are stored.

The larger the value of N, greater than the
bandwidth used between the agent and
the manager and the greater the storage
required in the database. If a transaction
does not fall in the top N transactions for
a node (i.e., an application component of
one tier), while the processing time,
status and details of the transaction are
included in the total values, the individual
traces will not be available in eG
Enterprise. So in the transaction flow
graph, the corresponding node itself may
be missing. If you see a large number of
such fragmented traces, you can
consider increasing the value of N.

Figure 13: During typical operation of an application,
only a small percentage of transactions are processed

slowly or with errors.

Transaction with high latency

Transaction with errors/
exceptions

Transaction with no issuesAll Transactions

Figure 14: Configuration settings that influence how
eG Enterprise APM works in each tier.

How to Get Full Stack Visibility for Your Java Applications 12

The intention behind restricting the
traces to the top N is so that

administrators and development team
responsible for each tier can quickly
determine the requests that took the most
time in that tier and from the stack traces,
they can see how to optimize the application
to improve performance and ultimately,
enhance user experience.

eG Enterprise's distributed transaction tracing
capabilities for Java are a key to providing
code-level visibility for application analysis,
optimization and troubleshooting.

Figure 15: Full-stack visibility into Java applications.

Report the responsiveness of the
application at each tier of the
application delivery chain: Average
response time, percentage of slow and
stalled transactions provide insights to
help IT operations teams identify
problematic tiers.

Provide breakdown of processing times
at each tier: Besides reporting the
processing time of a transaction, eG
Enterprise APM also provides the
details of where this time was spent –
e.g., in processing database queries,
third party calls, other external calls,
etc. This helps identify any external
bottlenecks.

Get details of application exceptions:
This can highlight errors in application
processing that if proactively
highlighted can prevent application
failures down the line.

Using eG Enterprise APM, IT operations and
DevOps teams can:

Determine the application workload:
Transaction rate (requests/min) is
reported for each URL / URL group, so
any change in workload patterns can
be detected.

While in-depth application insights are necessary
and useful, they are not su�icient. When an

Converged application and
infrastructure monitoring
with eG Enterprise

What eG Enterprise Tracing of Application
Code Reveals?

https://www.eginnovations.com/supported-technologies/java-transaction-monitoring
https://www.eginnovations.com/supported-technologies/java-transaction-monitoring

Applications and infrastructure components can
be monitored from the same console. The same
universal agent deployed on a server can monitor
both the application stack and the infrastructure
(i.e., system metrics) – there is no need for a
separate machine agent! Also the integration is
not just in terms of presenting a common
dashboard for application and infrastructure
components.

eG Enterprise automatically discovers and maps
application to infrastructure dependencies in
service topology maps and embeds a patented
automatic root-cause diagnosis technology that
correlates between the performance of di�erent
application and infrastructure tiers and highlights
where the root-cause of application slowness lies.

The database server is thin-provisioned on the
hypervisor, so when the hypervisor is low on
space, requests to the database server start
failing. No amount of application code analysis
could have identified the root-cause of this issue.

The incident management panel in eG Enterprise
clearly highlights the cause-e�ect relationship
(see Figure 17). The highest priority issue is the
root-cause and indicates the space usage
problem on the VMware server. The database
errors and transaction slowness alarms are lower
in priority, highlighting that they are secondary
e�ects of the problem. With this level of insight, IT
operations teams can troubleshoot issues quickly
and e�iciently and lower MTTR.

To highlight how a converged application and
infrastructure monitoring strategy works, the slow
database queries in Figure 12 are actually a result
of VMware hypervisor issue with free space.

Figure 17: Root-cause diagnosis highlighted in the incident management panel of eG Enterprise.

How to Get Full Stack Visibility for Your Java Applications 13

be in the infrastructure – e.g., the application
could be running on a VM which is hosted on an
overloaded hypervisor, or the application could
be running on a cloud instance that has zero CPU
credits. To troubleshoot application slowness
accurately and e�iciently, a converged approach
to application and infrastructure monitoring is
necessary. This is what eG Enterprise employs.

Figure 16: Converged application and infrastructure monitoring.

How to Get Full Stack Visibility for Your Java Applications 14

The Converged Application and Infrastructure Monitoring technology it embeds is a key to how eG
Enterprise supports tightly integrated application and infrastructure monitoring from a single pane of
glass.

In this whitepaper, we have outlined the di�erent challenges in monitoring Java applications and have
discussed the varied capabilities included in eG Enterprise to address these challenges. The converged
application and infrastructure monitoring approach adopted by eG Enterprise is the only way to
conclusively address application slowness issues.

Licensed by operating systems and nodes on which it is deployed, not based on number of instances,
number of CPUs/cores, or by the memory available on the monitored systems, eG Enterprise is highly
cost-e�ective. Furthermore, it is available both as software you can deploy on-premises or as a SaaS
service from the cloud. Get a 30-day free trial of eG Enterprise for application performance monitoring
here: https://www.eginnovations.com/it-monitoring/free-trial

Conclusion

https://www.eginnovations.com/it-monitoring/free-trial

eG Innovations provides the world’s leading enterprise-class performance management solution that
enables organizations to reliably deliver mission-critical business services across complex cloud, virtual,
and physical IT environments. Where traditional monitoring tools often fail to provide insight into the
performance drivers of business services and user experience, eG Innovations provides total
performance visibility across every layer and every tier of the IT infrastructure that supports the business
service chain. From desktops to applications, from servers to network and storage, eG Innovations helps
companies proactively discover, instantly diagnose, and rapidly resolve even the most challenging
performance and user experience issues.

eG Innovations’ award-winning solutions are trusted by the world’s most demanding companies to
ensure end user productivity, deliver return on transformational IT investments, and keep business
services up and running. Customers include Anthem, Humana, Staples, T-Mobile, Cox Communications,
eBay, Denver Health, AXA, Aviva, Southern California Edison, Samsung, and many more.

To learn more visit www.eginnovations.com

About eG Innovations

https://www.eginnovations.com/

https://www.eginnovations.com/converged-application-infrastructure-monitoring

References

How to Get Full Stack Visibility for Your Java Applications 15

Java Application Monitoring:

Java Application Monitoring | eG Innovations, Modern Web Application Performance Monitoring (APM)
(eginnovations.com) and Java Transaction Monitoring | eG Innovations

JVM Monitoring:

JVM Monitoring Tools – Threads, GC, Memory Leaks & more (eginnovations.com)

JMX:

JMX Monitoring | eG Innovations and How does JMX Monitoring Work | eG Innovations

Application Server Monitoring

JBoss Monitoring | eG Innovations

Tomcat Monitoring | eG Innovations

JBoss Performance Tuning & Monitoring | eG Innovations

10 Apache Tomcat Performance Tuning Tips and Best Practices (eginnovations.com)

Java Troubleshooting:

7 Tuning Tips to Enhance Java Application Performance (eginnovations.com)

How to make Java run faster - 6 Tips | eG Innovations

Top Java Performance Problems & How to Fix them | eG Innovations

Java Memory Leak: 7 Myths that SREs Need to Know (eginnovations.com)

Troubleshoot Java Application Issues with Java Transaction Tracing (eginnovations.com)

5 Java Application Monitoring Best Practices | eG Innovations

Industry use cases:

Seven Critical Strategies and Features for Application Performance Management in Higher and Further
Education (eginnovations.com)

Real Customer End-to-End Monitoring Case Study: End-to-End Application Monitoring to Troubleshoot
Slowness (eginnovations.com)

A multi-cloud services example including payment gateway failures: Monitoring and Troubleshooting
Multi-cloud Infrastructures (eginnovations.com)

https://www.eginnovations.com/supported-technologies/java-application-monitoring https://www.eginnovations.com/blog/web-application-apm-monitoring/
https://www.eginnovations.com/blog/web-application-apm-monitoring/ https://www.eginnovations.com/supported-technologies/java-transaction-monitoring

https://www.eginnovations.com/supported-technologies/jvm-monitoring

https://www.eginnovations.com/supported-technologies/jmx-monitoring https://www.eginnovations.com/blog/how-does-jmx-monitoring-work/

https://www.eginnovations.com/supported-technologies/jboss-monitoring

https://www.eginnovations.com/supported-technologies/tomcat-monitoring

https://www.eginnovations.com/blog/jboss-performance-tuning/

https://www.eginnovations.com/blog/tomcat-performance-tuning/

https://www.eginnovations.com/blog/how-to-enhance-performance-java-applications/

https://www.eginnovations.com/blog/6-tips-fast-java-applications/

https://www.eginnovations.com/blog/top-10-java-performance-problems/

https://www.eginnovations.com/blog/7-myths-of-java-memory-leaks-what-sres-need-to-know-and-communicate/

https://www.eginnovations.com/blog/how-to-troubleshoot-java-code/

https://www.eginnovations.com/blog/best-practices-using-java-apm/

https://www.eginnovations.com/ebooks/seven-critical-strategies-and-features-for-apm
https://www.eginnovations.com/ebooks/seven-critical-strategies-and-features-for-apm

https://www.eginnovations.com/blog/end-to-end-application-monitoring/
https://www.eginnovations.com/blog/end-to-end-application-monitoring/

https://www.eginnovations.com/blog/monitoring-multicloud-infrastructures/
https://www.eginnovations.com/blog/monitoring-multicloud-infrastructures/

