Memory Usage - OS Test

This test reports statistics related to the usage of physical memory of the VMs.

Target of the test : A Hyper-V / Hyper-V VDI server

Agent executing the test : An internal agent

Output of the test : For a Hyper-V server, one set of results will be reported for every VM on the server

For a Hyper-V VDI server, one set of results will be reported for the user who is currently logged into each virtual desktop on the server

Configurable parameters for the test
Parameter Description

Test period

This indicates how often should the test be executed.

Host

Specify the HOST for which this test is to be configured.

Port

Specify the port at which the target host is listening. By default, this is NULL

Inside View Using

By default, this test communicates with every VM remotely and extracts “inside view” metrics. Therefore, by default, the Inside View Using flag is set to Remote connection to VM (Windows).

Typically, to establish this remote connection, eG Enterprise requires that the eG agent be configured with domain administrator privileges. In high-security environments, where the IT staff might have reservations about exposing the credentials of their domain administrators, this approach to extracting “inside view” metrics might not be preferred. In such environments therefore, eG Enterprise provides administrators the option to deploy a piece of software called the eG VM Agent on every Windows VM; this VM agent allows the eG agent to collect “inside view” metrics from the Windows VMs without domain administrator rights. Refer to Configuring Windows Virtual Machines to Support theInside View Using the eG VM Agent topic for more details on the eG VM Agent. To ensure that the “inside view” of Windows VMs is obtained using the eG VM Agent, set the Inside View Using flag to eG VM Agent (Windows). Once this is done, you can set the Domain, Admin User, and Admin Password parameters to none.

Domain, Admin User, Admin Password, and Confirm Password

By default, this test connects to each virtual guest remotely and attempts to collect “inside view” metrics. Accordingly, the Inside View Using flag is set to Remote connection to VM (Windows) by default. To obtain a remote connection, the test must be configured with the privileges of an administrative user to the domain within which the guests reside. The first step towards this is to specify the DOMAIN within which the virtual guests reside. The Admin User and Admin password will change according to the Domain specification. Discussed below are the different values that the Domain parameter can take, and how they impact the Admin User and Admin Password specifications:

  • If the VMs belong to a single domain:  If the guests belong to a specific domain, then specify the name of that domain against the Domain parameter. In this case, any administrative user in that domain will have remote access to all the virtual guests. Therefore, an administrator account in the given domain can be provided in the Admin User field and the corresponding password in the Admin Password field. Confirm the password by retyping it in the Confirm Password text box.

  • If the VMs belong to different domains: In this case, you might want to provide multiple domain names. If this is done, then, to access the guests in every configured domain, the test should be configured with the required user privileges; this implies that along with multiple Domain names, multiple Admin User names and Admin Passwords would also have to be provided. To help administrators provide these user details quickly and easily, the eG administrative interface embeds a special configuration page. To access this page, simply click on the Click here hyperlink that appears just above the parameters of this test in the test configuration page. To know how to use the special page, refer to Configuring Users for VM Monitoring topic.

  • If the Inside View Using flag is set to ‘eG VM Agent (Windows)’: On the other hand, if the inside view using flag is set to eG VM Agent (Windows), then it implies that the Inside View can be obtained without domain administrator privileges. Therefore, set the Domain, Admin User, and Admin Password, parameters to none.

Report By User

For the Hyper-V monitoring model, the Report By User flag is set to No by default, indicating that by default, the guest operating systems on the Hyper-V server are identified using the hostname specified in the operating system. On the other hand, for the Hyper-V VDI model, this flag is set to Yes by default; this implies that in case of VDI servers, by default, the guests will be identified using the login of the user who is accessing the guest OS. In other words, in VDI environments, this test will, by default, report measures for every username_on_virtualmachinename.

Report Powered OS

This flag becomes relevant only if the report by user flag is set to ‘Yes’.

If the Report Powered OS flag is set to Yes (which is the default setting), then this test will report measures for even those VMs that do not have any users logged in currently. Such guests will be identified by their virtualmachine name and not by the username_on_virtualmachinename. On the other hand, if the Report Powered OS flag is set to No, then this test will not report measures for those VMs to which no users are logged in currently.

Dynamic Memory Enabled

Dynamic Memory enables Hyper-V hosts to dynamically adjust the amount of memory available to virtual machines in response to changing workloads. Instead of assigning a specific amount of memory to a virtual machine, the administrator instead configures a range of memory, memory priority and other settings that Hyper-V then uses to determine how much memory to allocate to the virtual machine in real time. The Dynamic Memory ensures higher virtual machine consolidation ratios and increases flexibility for managing virtualized workloads.

Ignore VMs Inside View

Administrators of some high security Hyper-V environments might not have permissions to internally monitor one/more VMs. The eG agent can be configured to not obtain the 'inside view' of such ‘inaccessible’ VMs using the Ignore VMs Inside View parameter. Against this parameter, you can provide a comma-separated list of VM names, or VM name patterns, for which the inside view need not be obtained. For instance, your Ignore VMs Inside View specification can be: *xp,*lin*,win*,vista. Here, the * (asterisk) is used to denote leading and trailing spaces (as the case may be). By default, this parameter is set to none indicating that the eG agent obtains the inside view of all VMs on a Hyper-V host by default.

Note:

While performing VM discovery, the eG agent will not discover the operating system of the VMs configured in the Ignore VMs Inside View text box.

Exclude VMs

Administrators of some virtualized environments may not want to monitor some of their less-critical VMs - for instance, VM templates - both from 'outside' and from 'inside'. The eG agent in this case can be configured to completely exclude such VMs from its monitoring purview. To achieve this, provide a comma-separated list of VMs to be excluded from monitoring in the Exclude VMs text box. Instead of VMs, VM name patterns can also be provided here in a comma-separated list. For example, your Exclude VMs specification can be: *xp,*lin*,win*,vista. Here, the * (asterisk) is used to denote leading and trailing spaces (as the case may be). By default, this parameter is set to none indicating that the eG agent obtains the inside and outside views of all VMs on a virtual host by default. By providing a comma-separated list of VMs/VM name patterns in the Exclude VMs text box, you can make sure the eG agent stops collecting 'inside' and 'outside' view metrics for a configured set of VMs.

Ignore WINNT

By default, the eG agent does not support the inside view for VMs executing on Windows NT operating systems. Accordingly, the Ignore WINNT flag is set to Yes by default.

Exclude IP

Typically, when performing VM discovery, the eG agent automatically discovers the operating system on which every VM runs, and all the IP addresses that each VM supports. If two are more VMs on a target vSphere server are in a VM cluster, then the eG agent will also auto-discover the cluster IP address. Since the cluster IP address is shared by all VMs in the cluster, this IP address will be in the discovery list of every VM in the cluster. In this case, if the eG agent attempts to obtain the 'inside view' of each VM in a cluster using their cluster IP address, incorrect metrics may be reported sometimes. To avoid this, you may want to instruct the eG agent to not use the cluster IP address when collecting 'inside view' metrics. For this, specify a comma-separated list of cluster IP addresses to be excluded in the EXCLUDE IP text box.

Group Processes with Arguments

By default, the detailed diagnosis of the Used physical memory measure of this test reports the number of instances of each process running on the VM, and the aggregated memory usage (in MB and %) of every process across all its instances. For example, if users to a VM are together having 15 instances of Chrome open on the machine at around the same time, then the detailed diagnosis of the Used physical memory measure will compute and display the collective memory usage of all 15 instances against the Application Name, Chrome. From this, you can quickly identify the exact process that is 'collectively' (i.e., across its instances) over-utilizing the memory. Sometimes, administrators might want to isolate not just the process, but also similar process arguments that are guilty of abnormal memory consumption. This granular insight will take administrators closer to the root-cause of the memory bottleneck on a desktop. For instance, in the Chrome example above, say 8 of the 15 instances are used to access the same YouTube video, and 7 instances are accessing a shopping site. In such a case, if memory usage is aggregated at the URL-level and not the process-level, then administrators can quickly identify which precise URL is draining memory - the YouTube video? or the shopping site? For this, detailed diagnostics should be grouped by process arguments (eg., URLs) and not just by process/application names. To enable grouping by arguments, set the Group Processes With Arguments flag to Yes. By default, this flag is set to No.

Memory Utilization in Percent

By default, this parameter is set to 75 percentage indicating that by default this test will display top-10 memory intensive processes on a VM in the detailed diagnosis of the Physical memory utilized measure only when the memory utilization reaches/exceeds 75 percentage. On the other hand, if the memory utilization is lower than the value specified against this parameter, then, this test displays only top-3 memory intensive processes in the detailed diagnosis of the Physical memory utilized measure so as to conserve storage space on the database. However, this setting can be overridden if required.

Automated Action Enabled

A memory shortage caused due to memory space hogged by modified and standby memory lists has become an increasingly frequent and critical problem. The memory shortage can make a server stutter or run more slowly than usual. Such operational interruptions can make you spend more time on waiting for pages and programs to load, disturbing your work flow and leading to work delays. Moreover, memory shortage can not only impair user productivity, but can also bring crucial business processes to a halt, and can severely degrade overall user experience with the server. To avoid such an outcome, administrators need to rapidly empty the memory space unnecessarily hogged by the modified and standby memory lists. This way, administrators can ensure that adequate memory is always available for executing business-critical processes.

To enable administrators to achieve this, eG Enterprise offers 'Automation Actions'. These actions are governed by the 'Automation Action Enabled' flag.

This flag, if enabled, automatically initiates user-configured actions, so that the memory hogged by modified and standby memory lists can be cleared when memory utilization crosses a configured limit.

Note:

The 'Automation Action Enabled' parameters, once configured, will apply only to the chosen component. These settings will not be applied to other components even if the Apply to other components button is clicked in the Specific Test Configuration page.

Automation Memory Limit

This flag appears only if the Automated Action Enabled flag is enabled.

In this text box, specify the upper limit for memory utilization in percentage beyond which this test should trigger user-configured automation actions. By default, 95 percentage is set against this parameter. When the memory utilization reaches/exceeds the value specified in this text box, the user-configured actions will be automatically triggered. However, you can override this settings if required.

Empty Modified Memory

This flag appears only if the Automated Action Enabled flag is enabled.

Modified memory contains cached data and code that is not actively in use by processes, the system and the system cache. This memory needs to be written out before it will be available for allocation to a process or for system use. You can easily clear this memory using the Empty Modified Memory flag.

By default, this flag is set to No. When this flag is set Yes, amount of memory assigned to the modified list will be automatically cleared if the memory utilization reaches/exceeds the value specified against the Automation Memory Limit parameter.

Empty Standby Memory

This flag appears only if the Automated Action Enabled flag is enabled.

Standby memory is a page of physical memory that is not actively used. When writing a series of frequently used information in the memory area, the programs and services running on the server will use part of memory as cache. The cache should be released and made available after executing programs and services. If the standby memory is not cleared on a regular basis, it can slow down the server operations. Therefore, it is necessary to clear the standby memory at regular intervals. This can easily done using the Empty Standby Memory flag.

By default, this flag is set to No. When this flag is set Yes, memory that is allocated to the standby page list will be automatically cleared if the memory utilization reaches/exceeds the value specified against the Automation Memory Limit parameter.

Detailed Diagnosis

To make diagnosis more efficient and accurate, the eG Enterprise embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured to run detailed, more elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability of this test for a particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the following conditions are fulfilled:

  • The eG manager license should allow the detailed diagnosis capability
  • Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not be 0.
Measurements reported by the test:

Measurement

Description

Measurement Unit

Interpretation

Total physical memory

Indicates the total physical memory of this VM.

MB

 

Used physical memory

Indicates the used physical memory of this VM.

MB

 

Free physical memory

Indicates the free physical memory of the VM.

MB

This measure typically indicates the amount of memory available for use by applications running on the target VM.

On Unix operating systems (AIX and Linux), the operating system tends to use parts of the available memory for caching files, objects, etc. When applications require additional memory, this is released from the operating system cache. Hence, to understand the true free memory that is available to applications, the eG agent reports the sum of the free physical memory and the operating system cache memory size as the value of the Free physical memory measure while monitoring AIX and Linux guest operating systems. 

Physical memory utilized

 

Indicates the percent usage of physical memory by this VM.

Percent

Ideally, the value of this measure should be low. While sporadic spikes in memory usage could be caused by one/more rogue processes on the VM, a consistent increase in this value could be a cause for some serious concern, as it indicates a gradual, but steady erosion of valuable memory resources. If this unhealthy trend is not repaired soon, it could severely hamper VM performance, causing anything from a slowdown to a complete system meltdown.

You can use the detailed diagnosis of this measure to figure out which processes on the VM are consuming memory excessively.

Available physical memory

Indicates the amount of physical memory, immediately available for allocation to a process or for system use.

MB

Not all of the Available physical memoryisFree physical memory. Typically,Available physical memoryismade up of theStandby List, Free List, andZeroed List.

When Windows wants to trim a process' working set, the trimmed pages are moved (usually) to the Standby List. From here, they can be brought back to life in the working set with only a soft page fault (much faster than a hard fault, which would have to talk to the disk). If a page stays in the standby List for a long time, it gets freed and moved to the Free List.

In the background, there is a low priority thread (actually, the only thread with priority 0) which takes pages from the Free List and zeros them out. Because of this, there is usually very little in the Free List.

All new allocations always come from the Zeroed List, which is memory pages that have been overwritten with zeros. This is a standard part of the OS' cross-process security, to prevent any process ever seeing data from another. If the Zeroed List is empty, Free List memory is zeroed and used or, if that is empty too, Standby List memory is freed, zeroed, and used. It is because all three can be used with so little effort that they are all counted as "available".

A high value is typically desired for this measure.

This measure will be available for Windows VMs only.

Modified memory

Indicates the amount of memory that is allocated to the modified page list.

MB

This memory contains cached data and code that is not actively in use by processes, the system and the system cache. This memory needs to be written out before it will be available for allocation to a process or for system use.

Cache pages on the modified list have been altered in memory. No process has specifically asked for this data to be in memory, it is merely there as a consequence of caching. Therefore it can be written to disk at any time (not to the page file, but to its original file location) and reused. However, since this involves I/O, it is not considered to be Available physical memory.

This measure will be available for Windows VMs only.

Standby memory:

Indicates the amount of memory assigned to the standby list.  

MB

This memory contains cached data and code that is not actively in use by processes, the system and the system cache. It is immediately available for allocation to a process or for system use. If the system runs out of available free and zero memory, memory on lower priority standby cache page lists will be repurposed before memory on higher priority standby cache page lists.

Typically, Standby memory is the aggregate of Standby Cache Core Bytes,Standby Cache Normal Priority Bytes, and Standby Cache Reserve Bytes. Standby Cache Core Bytes is the amount of physical memory, that is assigned to the core standby cache page lists. Standby Cache Normal Priority Bytes is the amount of physical memory, that is assigned to the normal priority standby cache page lists. Standby Cache Reserve Bytes is the amount of physical memory, that is assigned to the reserve standby cache page lists.

This measure will be available for Windows VMs only.

Cached memory:

This measure is an aggregate of Standby memory and Modified memory.

MB

This measure will be available for Windows VMs only.

Note:

While monitoring Linux/AIX guest operating systems, you may observe discrepancies between the value of the Physical memory utilized measure and the memory usage percentages reported per process by the detailed diagnosis of the same measure. This is because, while the Physical memory utilizedmeasure takes into account the memory in the OS cache of the Linux/AIX VM, the memory usage percent that the detailed diagnosis reports per process does not consider the OS cache memory.