Equalizer Connection Details Test

This test not only reports the connection load on the equalizer in numbers, but also points to the nature of the workload  by revealing the type of connections handled by the equalizer – this way, administrators can evaluate the workload of the device better. In addition, the test also turns the spotlight on inactive/idle connections, so that administrators can make sure that such connections are kept at a bare minimum.

Target of the test : A Coyote Point Equalizer

Agent deploying the test : An external agent

Outputs of the test : One set of results for the equalizer being monitored

Configurable parameters for the test
Parameter Description

Test period

How often should the test be executed

Host

The IP address of the host for which this test is to be configured.

SNMPPort

The port at which the monitored target exposes its SNMP MIB; the default is 161.

SNMPVersion

By default, the eG agent supports SNMP version 1. Accordingly, the default selection in the SNMPversion list is v1. However, if a different SNMP framework is in use in your environment, say SNMP v2 or v3, then select the corresponding option from this list.

SNMPCommunity

The SNMP community name that the test uses to communicate with the firewall. This parameter is specific to SNMP v1 and v2 only. Therefore, if the SNMPVersion chosen is v3, then this parameter will not appear.

Username

This parameter appears only when v3 is selected as the SNMPversion. SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the SNMPv2 Framework, by additionally supporting message security, access control, and remote SNMP configuration capabilities. To extract performance statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent has to be configured with the required access privileges – in other words, the eG agent should connect to the MIB using the credentials of a user with access permissions to be MIB. Therefore, specify the name of such a user against this parameter. 

Context

This parameter appears only when v3 is selected as the SNMPVERSION. An SNMP context is a collection of management information accessible by an SNMP entity. An item of management information may exist in more than one context and an SNMP entity potentially has access to many contexts. A context is identified by the SNMPEngineID value of the entity hosting the management information (also called a contextEngineID) and a context name that identifies the specific context (also called a contextName). If the Username provided is associated with a context name, then the eG agent will be able to poll the MIB and collect metrics only if it is configured with the context name as well. In such cases therefore, specify the context name of the Username in the Context text box.  By default, this parameter is set to none.

AuthPass

Specify the password that corresponds to the above-mentioned Username. This parameter once again appears only if the SNMPversion selected is v3.

Confirm Password

Confirm the AuthPass by retyping it here.

AuthType

This parameter too appears only if v3 is selected as the SNMPversion. From the Authtype list box, choose the authentication algorithm using which SNMP v3 converts the specified username and password into a 32-bit format to ensure security of SNMP transactions. You can choose between the following options:

  • MD5 – Message Digest Algorithm
  • SHA – Secure Hash Algorithm

EncryptFlag

This flag appears only when v3 is selected as the SNMPversion. By default, the eG agent does not encrypt SNMP requests. Accordingly, the this flag is set to No by default. To ensure that SNMP requests sent by the eG agent are encrypted, select the Yes option. 

EncryptType

If this EncryptFlag is set to Yes, then you will have to mention the encryption type by selecting an option from the EncryptType list. SNMP v3 supports the following encryption types:

  • DES – Data Encryption Standard
  • AES – Advanced Encryption Standard

EncryptPassword

Specify the encryption password here.

Confirm Password

Confirm the encryption password by retyping it here.

Timeout

Specify the duration (in seconds) within which the SNMP query executed by this test should time out in this text box. The default is 10 seconds.

Data Over TCP

By default, in an IT environment, all data transmission occurs over UDP. Some environments however, may be specifically configured to offload a fraction of the data traffic – for instance, certain types of data traffic or traffic pertaining to specific components – to other protocols like TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent to conduct the SNMP data traffic related to the monitored target over TCP (and not UDP). For this, set this flag to Yes. By default, this flag is set to No.

Measurements made by the test
Measurement Description Measurement Unit Interpretation

Level4 total connections

Indicates the number of L4 connections currently processed by the equalizer.

Number

  • This serves as a good indicator of the Level-4 connection load on the equalizer.
  • Level-4 load balancing is to distribute requests to the servers at transport layer, such as TCP, UDP and SCTP transport protocol. The load balancer distributes network connections from clients who know a single IP address for a service, to a set of servers that actually perform the work. Since connection must be established between client and server in connection-oriented transport before sending the request content, the load balancer usually selects a server without looking at the content of the request.

Level4 peak connections

Indicates the high watermark of L4 connections processed by the equalizer.

Number

 

Level4 idle timeout count

Indicates the number of L4 connections that timed out currently, because they were unused for a long time.

Number

Ideally, the value of this measure should be 0. A sudden/steady increase in this value could be a cause for concern.

Level7 active connections

Indicates the number of L7 connections currently active on the equalizer.

Number

Both these measures serve as effective pointers to the L7 connection workload on the equalizer.

Layer-7 load balancing, also known as application-level load balancing, is to parse requests in application layer and distribute requests to servers based on different types of request contents, so that it can provide quality of service requirements for different types of contents and improve overall cluster performance. The overhead of parsing requests in application layer is high, thus its scalability is limited, compared to layer-4 load balancing. This is turn implies that a very high value for this measure will be accompanied by a significant increase in the processing overheads, but will ensure improved cluster performance.

Level7 total connections

Indicates the total number of L7 connections to the equalizer.

Number

Level7 peak connections

Indicates the high watermark of L7 connections to the equalizer.

Number