Synology GPU Details Test

GPU-accelerated computing is the use of a graphics processing unit (GPU) together with a CPU to accelerate scientific, analytics, engineering, consumer, and enterprise applications. GPU-accelerated computing enhances application performance by offloading compute-intensive portions of the application to the GPU, while the remainder of the code still runs on the CPU. Architecturally, while a CPU has only few cores and handles few hundred threads at a time, a GPU is composed of hundreds of cores that can handle thousands of threads simultaneously and render a flawless rich graphics experience.

DiskStation Manager (DSM) is a web-based operating system designed specifically for Synology NAS products. Surveillance Station is a professional Network Video Recording (NVR) package bundled with DiskStation Manager (DSM). In order to perform deep video analytics using a Surveillance station, a GPU graphics card is used along with Synology NAS storage system. Often, end users may complain of slowness when accessing graphic applications. Administrators must be able to instantly detect the slowness and figure out its root-cause - is it because adequate GPU resources are not allocated? or is it because of excessive utilization of GPU memory? The Synology GPU Details test helps administrators analyze such slowness with ease!

This test monitors the target Synology NAS storage system enabled with GPU and reports the GPU memory utilization. In addition, this test also reports how well the GPU is utilized in the storage system. By closely analyzing the GPU memory utilization patterns, administrators can easily identify abnormal GPU memory usage patterns and initiate root cause analysis to regulate the GPU memory utilization.

Target of the test : Synology NAS storage system

Agent deploying the test : An external agent

Outputs of the test : One set of the results for each disk on the target Synology NAS storage system that is being monitored

Configurable parameters for the test

Parameter

Description

Test period

How often should the test be executed

Host

The IP address of the host for which this test is to be configured.

SNMPPort

The port at which the monitored target exposes its SNMP MIB; the default is 161.

SNMPVersion

By default, the eG agent supports SNMP version 1. Accordingly, the default selection in the SNMPversion list is v1. However, if a different SNMP framework is in use in your environment, say SNMP v2 or v3, then select the corresponding option from this list.

SNMPCommunity

The SNMP community name that the test uses to communicate with the firewall. This parameter is specific to SNMP v1 and v2 only. Therefore, if the SNMPVersion chosen is v3, then this parameter will not appear.

Username

This parameter appears only when v3 is selected as the SNMPversion. SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the SNMPv2 Framework, by additionally supporting message security, access control, and remote SNMP configuration capabilities. To extract performance statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent has to be configured with the required access privileges – in other words, the eG agent should connect to the MIB using the credentials of a user with access permissions to be MIB. Therefore, specify the name of such a user against this parameter. 

Context

This parameter appears only when v3 is selected as the SNMPVERSION. An SNMP context is a collection of management information accessible by an SNMP entity. An item of management information may exist in more than one context and an SNMP entity potentially has access to many contexts. A context is identified by the SNMPEngineID value of the entity hosting the management information (also called a contextEngineID) and a context name that identifies the specific context (also called a contextName). If the Username provided is associated with a context name, then the eG agent will be able to poll the MIB and collect metrics only if it is configured with the context name as well. In such cases therefore, specify the context name of the Username in the Context text box.  By default, this parameter is set to none.

AuthPass

Specify the password that corresponds to the above-mentioned Username. This parameter once again appears only if the SNMPversion selected is v3.

Confirm Password

Confirm the AuthPass by retyping it here.

AuthType

This parameter too appears only if v3 is selected as the SNMPversion. From the AuthType list box, choose the authentication algorithm using which SNMP v3 converts the specified username and password into a 32-bit format to ensure security of SNMP transactions. You can choose between the following options:

  • MD5 - Message Digest Algorithm
  • SHA - Secure Hash Algorithm
  • SHA224 - Secure Hash Algorithm 224 bit
  • SHA256 - Secure Hash Algorithm 256 bit
  • SHA384 - Secure Hash Algorithm 384 bit
  • SHA512 - Secure Hash Algorithm 512 bit

EncryptFlag

This flag appears only when v3 is selected as the SNMPversion. By default, the eG agent does not encrypt SNMP requests. Accordingly, the this flag is set to No by default. To ensure that SNMP requests sent by the eG agent are encrypted, select the Yes option. 

EncryptType

If the EncryptFlag is set to Yes, then you will have to mention the encryption type by selecting an option from the EncryptType list. SNMP v3 supports the following encryption types:

  • DES - Data Encryption Standard
  • 3DES - Triple Data Encryption Standard
  • AES - Advanced Encryption Standard
  • AES128 - Advanced Encryption Standard 128 bit
  • AES192 - Advanced Encryption Standard 192 bit
  • AES256 - Advanced Encryption Standard 256 bit

EncryptPassword

Specify the encryption password here.

Confirm Password

Confirm the encryption password by retyping it here.

Timeout

Specify the duration (in seconds) within which the SNMP query executed by this test should time out in this text box. The default is 10 seconds.

EngineID

This parameter appears only when v3 is selected as the SNMPVersion. Sometimes, the test may not report metrics when AES192 or AES256 is chosen as the Encryption type. To ensure that the test report metrics consistently, administrators need to set this flag to Yes. By default, this parameter is set to No.

Data Over TCP

By default, in an IT environment, all data transmission occurs over UDP. Some environments however, may be specifically configured to offload a fraction of the data traffic – for instance, certain types of data traffic or traffic pertaining to specific components – to other protocols like TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent to conduct the SNMP data traffic related to the monitored target over TCP (and not UDP). For this, set this flag to Yes. By default, this flag is set to No.

Measurements made by the test
Measurement Description Measurement Unit Interpretation

Total memory

Indicates the total amount of GPU memory allocated to the storage system.

KB

 

Used memory

Indicates the amount of GPU memory currently used.

KB

Ideally, the value of this measure should be low. A high value or a consistent increase in the value could indicate gradual erosion of GPU memory resources.

Free memory

Indicates the amount of GPU memory currently available for use.

KB

Ideally, the value of this measure should be high.

Memory utilization

Indicates the percentage of used GPU memory.

Percentage

Ideally, the value of this measure should be low.

GPU utilization

Indicates the GPU utilization of the target storage system, expressed in percentage.

Percentage